A Characterisation of Pfaffian Near Bipartite Graphs

نویسندگان

  • Ilse Fischer
  • Charles H. C. Little
چکیده

A graph is 1-extendible if every edge has a 1-factor containing it. A 1-extendible non-bipartite graph G is said to be near bipartite if there exist edges e1 and e2 such that G − {e1, e2} is 1-extendible and bipartite. We characterise the Pfaffian near bipartite graphs in terms of forbidden subgraphs. The theorem extends an earlier characterisation of Pfaffian bipartite graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards a Characterisation of Pfaffian graphs

A bipartite graph G is known to be Pfaffian if and only if it does not contain an even subdivision H of K3,3 such that G − V H contains a 1-factor. However a general characterisation of Pfaffian graphs in terms of forbidden subgraphs is currently not known. In this paper we describe a possible approach to the derivation of such a characterisation. We also extend the characterisation for biparti...

متن کامل

A Polynomial Time Algorithm for Recognizing Near-Bipartite Pfaffian Graphs

A matching covered graph is a nontrivial connected graph in which every edge is in some perfect matching. A matching covered graph G is near-bipartite if it is nonbipartite and there is a removable double ear R such that G−R is matching covered and bipartite. In 2000, C. Little and I. Fischer characterized Pfaffian near-bipartite graphs in terms of forbidden subgraphs [3]. However, their charac...

متن کامل

Minimally non-Pfaffian graphs

We consider the question of characterizing Pfaffian graphs. We exhibit an infinite family of non-Pfaffian graphs minimal with respect to the matching minor relation. This is in sharp contrast with the bipartite case, as Little [7] proved that every bipartite non-Pfaffian graph contains a matching minor isomorphic to K3,3. We relax the notion of a matching minor and conjecture that there are onl...

متن کامل

Face-Width of Pfaffian Braces and Polyhex Graphs on Surfaces

A graph G with a perfect matching is Pfaffian if it admits an orientation D such that every central cycle C (i.e. C is of even size and G − V (C) has a perfect matching) has an odd number of edges oriented in either direction of the cycle. It is known that the number of perfect matchings of a Pfaffian graph can be computed in polynomial time. In this paper, we show that every embedding of a Pfa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. B

دوره 82  شماره 

صفحات  -

تاریخ انتشار 2001